豊橋技術科学大学

Search

Search

Nakamura, Yuichi

Affiliation Department of Electrical and Electronic Information Engineering
Title Associate Professor
Fields of Research Magnetic hologram memory / Multiferroic composite / Spin caloritronics / Electrical and electronic materials / Materials processing
Degree Ph.D
Academic Societies The Institute of Electrical Engineers of Japan / The Japan Society of Applied Physics / The Magnetic Society of Japan / The Japan Institute of Metals / The Thermoelectrics Society of Japan/ The Institute of Electronics Information and Communication Engine
E-mail nakamura@ee
Please append ".tut.ac.jp" to the end of the address above.
Laboratory website URL http://www.spin.ee.tut.ac.jp
Researcher information URL(researchmap) Researcher information

Research

 磁性材料をキーマテリアルとして、今までに無い新しいデバイスの実現を目指して研究を進めています。年々増え続ける膨大な情報を処理し、保存する技術として、我々の研究室で開発されたコリニアホログラフィックメモリの実用化を目指すとともに、それにも用いられる空間光変調器などの光制御デバイス応用を目指したマルチフェロイック複合膜の開発を進めています。また熱流を制御してスピン流を制御するフォノン流制御スピンゼーベック素子をはじめ、他の高機能酸化物電気・電子材料についても検討を行っています。

Theme1:Development of magnetic hologram memory

Overview

Holographic memory is expected as a high recording density and data transfer speed storage device for storing large-scale information. In this research, we are developing magnetic holographic memory using a unique collinear holography technology with numerical simulation and experiments.

Selected publications and works

"Error-free reconstruction of magnetic hologram via improvement of recording conditions in collinear optical system" Y. Nakamura, Z. Shirakashi, H. Takagi, P.B. Lim, T. Goto, H. Uchida, M. Inoue, Opt. Express, vol.25(13), pp.15349-15357 (2017).
"Development of Heat Dissipation Multilayer Media for Volumetric Magnetic Hologram Memory" Y. Nakamura, P.B. Lim, T. Goto, H. Uchida, M. Inoue, Appl. Sci. vol.9, 1738 (2019).

Keywords

magnetic hologram, diffraction efficiency, magnetic materials

Theme2:Development of multiferroic composites for optical applications

Overview

With the advance in the information technology and optical communication fields, the demand for higher performance of optical control devices that control the intensity, phase, polarization of light is increasing. In this research, to realize voltage-driven ultra-high-speed, low-power-consumption optical control devices, multiferroic composites in which nano structure of magnetic garnet and piezoelectric materials is controlled are developing for light control.

Keywords

multiferroic composite, magnetic materials, piezoelectric materials, optical applications

Theme3:Spin Seebeck elements with multilayer structure for controlling phonon flow

Keywords

spin Seebeck effect, phononic crystals

Title of class

Electric Circuit 2 / Complex Function Theory / Electronic Materials 2 / Advanced Materials for Electronics 1


to Pagetop