fontsize
Search

News & Topics

Home > News & Topics > Object transparency reduces human perception of three-dimensional shapes

Object transparency reduces human perception of three-dimensional shapes

10 Feb 2021


Transparent objects look flattened

The research team led by Masakazu Ohara, graduate student of the Department of Computer Science and Engineering at Toyohashi University of Technology (student in the Leading Program doctoral program); Associate Professor Kowa Koida of the Electronics-Inspired Interdisciplinary Research Institute; and Associate Professor Juno Kim of the University of New South Wales (Australia) discovered that when people judge the thickness of an object, objects with glass-like transparent optical properties are perceived to be flatter than they actually are. It was previously known that objects made of metallic or glossy materials are perceived to be thicker than what they are, but now the current research has identified that transparent properties surprisingly have the opposite effect. The result of the analysis of image cues that contribute to judgments of thickness indicated that humans may perceive thickness based on image characteristics in the form of regional variations of local luminance contrast. With this computational model, the types of images in which the shape of 3D objects may be misinterpreted by humans can now be predicted, which may be useful for everyday applications, such as devices to assist with walking in people with low-vision or autonomous driving.

Full text: Object transparency reduces human perception of three-dimensional shapes
TUT website: Press release

to Page top