B BRI
..'}\(.ﬂi /ﬂ /0 H

BT - FRLFEFER | F8BES D085403 IWH%¥

i

15
TRk e e RN

w3 B F O (ED

i SCEE | FANCE SO TR EZ21TO v~/ 77 ut y FICET 55

(#EE 1,200 FFE)

HEO~A 7 uratky L, &Ek, EE OO, LEOMIL, WHIE
IThITWA., BUWHERREZENRT A72D120F, 7arF AMIEWWEFERNIET 5 MNE
WHDHD, TNHITEHROER (BEBER) ko TELAREND. FlziE, 5
TR EERTLHME L, FHATIMEOMIZIET —ZKEFEBERERENH Y, FIRIZEST
FTHZELTERY (BOERE). £, BGSIETHETTLH5ETHRLT D0
EDDWO LT, WK MG OFmAALMTZ 20 HIHEEE). 2o 0KREFR,
Tat v P HERICERREREL RKTT. THICKL, TOOEREEEMT 729,
BEFR, DT &I ABERREIN TS, ZLEOHIEIL, G5 DEITHIIC
FERETHT A2 LT, Ity HCREIRETEZERL, HEMEEZZERL TV,

TR L, MREM OO OEELREETH LD, N— Ny =T EOHEN, EEx
FNFX—HENMBREE 72D, £ 2 CTREIX T, ETREEOMRER L, EEL, &
I, T RIEEDOEENLICEREH T, LV EREL FHMELZR O D OMIEE1T-
2. ETHBIIMSOETHEREZ, M5 72y TRECTFRITA2EETHY, BEDOKREF
EREMTHIET, MAL-NAIIMEEED D I ENTE S, EFHNT, EBRERVHT:
Value History Table)iZiBEDOETHERZRFL, BER UMSNHE LIS, £
LTWAEZRAWTMROETHERETHTS. LML, EXEKRTHM5I2E, FE
D/RE—2 T, PRIFRERMS &, 7 N7 U X LREEERT 5 FRIARTRE/ R 5
NREELTED, 2TOMENTFHRIFEE L IZR 572, VHT OV A XIIARTH D7
W, THIRFIRERMBEBRETHE, HEMEIANEMT S, £2 T, ZOMETIE,
FRESEEZ TOHE L THE, ETERE~SEHEEITO Z LT, HEOMHEEIT O
BERRELL. ZOBEICE- T, EREEBEOY 5D NN— RN =T HKET, REEDT
BIERER 1SS Z LN FREL 7o 77,

THNEIMS 7 = v FE TN D28, THRMEEICT 7 v AT 5508, Fllxss
2o TCWVBMENE I MITbnban. £, FHRSEL o TWThH, FHIFREIC
STWND EITRGZ2WV. FRIFTEE CRWamaMETHRREIC T 78X %2175 &, BT
FNFX—DHEINT 5. 2O TIE, FRIFERIZZR S THENE I hOFEREF-H,
THMEE~ DR T 7 e XA &M 5 Z & T, ETHEE, Sk REEosR T %
NE—HIBT HMELZREL, TRV —HIBEREEEMIIRLT.

IO DOREWBITLY, ETEME, ST REEOMERER L, BEEERL,
FOBREL FEBELZEBT LI ERFREE T

year month day

2013 | 16
Department[Electronic and Information Engineering|ID| D085403 Seiichi Nakagawa
Supervisor|Ryotaro Kobayashi
Name Yoshio Shimomura
Abstract
Title Study on High-Performance Microprocessors Based on Predictions

(800 words)

The current microprocessors use the parallelism included in the program to achieve high performance. Inherent
parallelism in programs is restricted by multiple factors. Among them, there are true data dependencies and
control dependencies. The true data dependency occurs when an instruction depends on the result of a previous
instruction. In order to mitigate them, value prediction techniques are used. The control dependency is caused by
a branch instruction. It results in fetch stall until the end of the execution of the branch instruction. To mitigate
this problem, branch prediction techniques are proposed.

This paper proposes three mechanisms to achieve the efficiency of these prediction mechanisms. Generally, value
predictions use the relations among past and future values. Past values are stored in a table called VHT (Value
History Table), and this history is used to predict future data. VHT is indexed by the instruction address and is
referred and updated during the instruction fetch and commit stage, respectively. This study focuses on the “stride
value predictor’. Each entry in VHT consists of a tag field, a value field, a stride field, and a state field. The tag is
the upper bits of an instruction address. The value indicates the last instruction result. The stride indicates the
difference between the last two results. The state indicates the state of the value history: “Initial”, “Transition”, or
“Steady”. The update operation is described as follows: First, the state is specified as “Initial”. Second, the stride is
calculated and the state changes from “Initial” to “Transition”. Subsequently, if the stride becomes constant, the
state changes to “Steady”; otherwise, the state changes to “Transition”. When an instruction is fetched, VHT is
referred and the corresponding entry is read. If the state is “Steady”, the predicted value is obtained by adding the
value and stride. In the first mechanism, we propose the mechanism that moves only the instruction that became
“Steady” to VHT. The target instruction for the value prediction is registered in PVT (Predictability Verification
Table) in the beginning. It moves to VHT when the entry is updated, and it changes to the “Steady” state. The
instruction that doesn’t become “Steady” state stays in PVT. As a result, it becomes possible to register only
instruction to which it can predict in VHT. In the second mechanism, we propose a more efficient mechanism for a
value predictor that extends the use of an existing BTB (branch target buffer) to reduce the number of invalid
'VHT references. BTB is a buffer used to predict the target address of a branch instruction. The proposed
mechanism introduces a p-bit (predictability bit) to identify an instruction and added a field to BTB. The
proposed mechanism controls VHT references according to p-bits (series of p-bit). The proposed mechanism
comprises the extended BTB, refer unit, update unit, and VHT. Except for VHT, all these components employ
p-bits. Each bit of p-bits indicates whether the corresponding instruction following the last taken branch is
predictable or not. The update unit sets the p-bit on the basis of the predictability of the committed instruction,
which is predictable only if the corresponding VHT state is “Steady”. The refer unit refers to VHT on the basis of
the p-bit corresponding to the fetched instruction.

A branch prediction consists of the branch direction prediction and the branch target prediction. It consumes
considerable energy because BTB is large and is referenced very frequently. In the third mechanism, we propose a
more efficient mechanism for a branch predictor that uses a dedicated table, called BB Table (branch bit table) to
reduce the number of invalid BTB references. The proposed mechanism introduces a B-Bit (branch bit) and
B-Bits (series of B-Bit) to identify a branch instruction, and each entry of BB Table contains multiple B-Bits
corresponded to statically continuous instructions. The proposed mechanism controls BTB references according to
B-Bits. The proposed mechanism consists of BTB, extended refer unit, extended update unit, and BB Table. Each
bit of B-Bits indicates whether the corresponding instruction following the last taken branch is branch instruction
or not. The refer unit refers to BTB on the basis of the B-Bit corresponding to the fetched instruction.

We used the SimpleScalar Tool Set to simulate the architecture layer and ran eight programs from the
SPECint2000 suite as benchmarks. In the first experiment, we confirmed to obtain the equivalent performance by
using half the number of entries of conventional mechanisms. In the second experiment, the evaluation results
showed that this technique achieved significant improvements in efficiency and small losses of performance. The
proposed mechanism reduces invalid references by 42.4% and energy by 25.7% with 0.1% performance loss on
average in the 32 p-bits length. In the third experiment, the evaluation results show that this mechanism reduces
energy consumption without performance loss. Unnecessary references and energy consumption are reduced by

71.0% and 55.4% on average with the 16 B-Bits length. respectivelv

