2025 年 8月 22日

豊橋技術科学大学長 殿

応用化学・生命工学 専攻 学位審査委員会

委 員 長 髙島 和則

論文審査及び最終試験の結果報告

このことについて、博士学位論文審査を実施し、下記の結果を得ましたので報告いたします。

学位申請者	Christine Lee Li Mei				学籍看	番号	第	į	183	3443÷	号
申請学位	博士(工学) 専攻名 大学院工学研究科博士後期課程 応用化学・生命工学							生專巧	ζ		
博士学位 論文名	Neurodevelopmental Effects of Maternal Acetamiprid Exposure: From Cerebellar Changes to Behavioral Outcomes (母親へのアセタミプリド曝露による神経発達への影響:小脳の変化から行動の結果まで)										
論文審査の 期間	20)25年	7月	17日 ~	2	025年	8	月	20	3	
公開審査会 の日	2025 年	8月 4	1日	最終試験 実施		2025	年	8	月	19	日
論文審査の 結果**	合格			最終試験 結果		合格					

審査委員会(学位規程第6条)

学位申請者にかかる博士学位論文について、論文審査、公開審査会及び最終試験を行い、別紙論文内容の要旨及び審査結果の要旨のとおり確認したので、学位審査委員会に報告します。

委員長

手老 龍吾

委員

浴 俊彦

吉田 祥子

印

印

囙

※論文審査の結果及び最終試験の結果は「合格」又は「不合格」の評語で記入すること。

論 文 内 容 の 要 旨

本論文は、ラットの胎生期のアセタミプリド曝露が、小脳プルキンエ細胞およびミクログリアに及ぼす影響、ならびに動物の幼若期および成熟期における行動異常に焦点を当て、殺虫剤の胎生期曝露が及ぼす影響を明らかにすることを目的としている。

第1章ではネオニコチノイド系殺虫剤の問題点を要約している。ネオニコチノイド系殺虫剤は、農業における広範な使用と環境への潜在的な影響から、近年大きな注目を集めている。その一種であるアセタミプリドはニコチンと類似した構造を持ち、ニコチン性アセチルコリン受容体のアゴニストとして作用して正常な神経シグナル伝達を阻害する。この作用機序は、従来の殺虫剤がアセチルコリンエステラーゼによるアセチルコリン分解に対する抵抗性を持つこととは異なるもので、アセタミプリドの新規の作用機序が、発達中の哺乳類の神経系に未知の長期的な影響を及ぼすことが懸念されている。

第2章では、妊娠ラットのアセタミプリド曝露が出生仔の成熟期の行動変化に及ぼす影響について考察した。40 mg/kg および 60 mg/kg のアセタミプリドに曝露された出生仔は、成熟後、社会性行動の変化、不安神経症様の行動異常を示した。成熟した動物の行動異常にはさまざまの要因が関与するため、第3章では発達期の動物におけるアセタミプリドの影響を研究した。出生仔の後肢の筋力に胎生期のアセタミプリド曝露が影響を及ぼすことを示した一方、20 mg/kg の曝露では、胎生期アセタミプリド曝露の影響は認められなかった。これらの知見は環境毒物に関連する潜在的リスクの理解と、農業および害虫防除における農薬使用に関する規制上の判断に資することが期待される。

第4章では胎生期アセタミプリド曝露が出生仔の小脳発達に及ぼす影響を調査したところ、アセタミプリド40 mg/kg および60 mg/kg の曝露が、異常な小脳プルキンエ細胞配列、次いでプルキンエ細胞の喪失を引き起こすことを示した。さらに、アセタミプリド曝露は炎症型のCD68 陽性ミクログリアの数を増加させた。これは、アセタミプリド曝露がプルキンエ細胞に対する貪食性ミクログリアの異常な増加をもたらし、最終的にプルキンエ細胞の喪失につながることを示唆している。これらの神経細胞の変化が、成熟動物及び発達期動物の行動学的変化の原因である可能性がある。

第5章では神経細胞死を制御する脳の免疫細胞であるミクログリアの変化を追跡するため、胎生期アセタミプリド曝露を受けたラットからミクログリアを培養した。アセタミプリドに曝露されたラットから培養したミクログリアは、炎症性サイトカインのインターロイキン·18 (IL-18) レベルの上昇を示すことを示し、アセタミプリド曝露群の IL-1 β 濃度は、対照群およびジメチルスルホキシド曝露群と比較して、アデノシン三リン酸(ATP)刺激により有意に増加した。一方アセタミプリド曝露群のミクログリアでは貪食特性が増強された一方で、ATP 刺激後のアセタミプリドの貪食機能は低下した。これらの知見から、アセタミプリド曝露によって誘導されるミクログリアの初期活性化後の ATP 刺激が、ミクログリアの貪食機能を阻害することを示唆した。

第6章では、新しい細胞観察技術である走査型音響顕微鏡を用い、音響インピーダンスモード (Cモード) と透過型三次元インピーダンスモード (Bモード) の両方で観察した。Bモードと Cモードを用いた二相性音響観察により、ATP 処理した生きた状態でのミクログリアの動的形態を観察したところ、ATP 刺激はミクログリアの形状と厚さを変化させ、細胞の体積弾性率が変化することを初めて明らかにした。

第7章で本研究をまとめ、母体へのアセタミプリド曝露が成体までの出生仔の発達に及ぼす 影響について、行動や細胞レベルで明らかにした。これらの知見は、母体への農薬などの環境 因子への曝露が、出生仔の神経発達にどのように影響するかを理解する上で大きく貢献すると 期待される。

審査結果の要旨

本論文は、農薬アセタミプリドの胎児期曝露がもたらす影響について、動物実験および細胞培養実験を通じて、成熟期の個体、発達期の個体、培養細胞について、状態変化と刺激に対する反応性、動的形状の変化と生化学的反応の変化という総合的な観点から研究したものである。アセタミプリドはネオニコチノイド系殺虫剤であり、昆虫神経のシナプス後膜のニコチン性アセチルコリン受容体に結合し、神経の興奮とシナプス伝達の遮断を引き起こすことで殺虫活性を示す。従来の有機リン系殺虫剤がアセチルコリンエステラーゼを阻害する作用を持つのに対し、アセタミプリドは受容体に直接作用するため、昆虫が耐性を獲得することが難しい一方、発がん性、急性毒性が低く有用な農薬として販売されてきた。その一方、昆虫に対する影響は大きく、特に欧州では、ミツバチ集団の壊滅を引き起こすとして使用が制限されることがある。さらに哺乳動物でも胎生期、乳児期は神経の発達期であり、アセチルコリン受容体を刺激するアセタミプリドの毒性学上のリスクについて検討される必要があった。

本研究では、妊娠ラットに各濃度のアセタミプリドを経口投与し、出生仔の成熟後の運動能力、社会性行動を検討し、曝露に由来する行動変化を観察したが、明確な投与量依存性を見出さなかった。発達期の運動能力試験を行った結果、特に後肢の運動能力が投与量依存性に有意な低下を示した。そこで後肢の運動制御の中枢である小脳の発達を観察した結果、アセタミプリド曝露によって小脳の中心的神経細胞であるプルキンエ細胞に発達依存的な変性を見出した。

小脳プルキンエ細胞は、発達の過程で定まった位置への移動と回路形成に伴う選別を受けることが知られている。本研究によって、アセタミプリド曝露によるプルキンエ細胞の変性には、移動の抑制と選別への影響の二面性があることが観察され、その制御が脳内の免疫細胞であるミクログリアの活性化によるものであることが示された。そこで細胞レベル、生化学的検討のレベルの研究を進め、アセタミプリド曝露によってミクログリアが炎症性サイトカインのインターロイキン1-βを発現すること、一方で誘導型一酸化窒素合成酵素の発現は抑制されること、ミクログリアの活性化誘導因子として知られるアデノシン三リン酸はアセタミプリド曝露で活性化されたミクログリアには更なる活性化効果がないことを見出した。これは攻撃と保護の二面性を持ち、複雑な制御を受ける脳の免疫細胞ミクログリアを研究する上で大変重要な知見で、化学物質に曝露された脳が機能をできるだけ維持しながらダメージを受けた神経細胞を制御する過程を反映したものと考えられる。

最後に、ミクログリアの動的で立体的な変化を観察するために、本学と本多電子株式会社とで開発された超音波顕微鏡を用いて、アセタミプリド曝露を受けたミクログリアの形態変化を観察した。超音波顕微鏡は細胞内の線維成分の変化を可視化できるため、細胞の活動を生きたまま観察することが可能である。本研究では、アセタミプリド曝露を受けたミクログリアが ATP 刺激によって立体的な形状を有意に変化させることを明らかにした。

本研究は、アセタミプリドという未だ評価の定まらない新規殺虫剤の哺乳動物に対する影響について、発達の各過程を網羅的に研究し、胎児期曝露による影響が神経細胞の変性とそれを引き金とした脳内免疫細胞の活性化であることを初めて見出したもので、今後の発達神経毒性研究の上でも重要な知見を与えたものと判断する。また、従来からの研究手法に加え、新規の観察技術を生命研究に応用し、その有用性を検討したことも特筆できる。本研究により、胎生期動物に対するアセタミプリド曝露の生物影響(ハザード)が示されたが、本研究に用いた曝露量は環境中の残留量・推定曝露量よりもかなり多く、アセタミプリドのリスクは現実には生じないものと考えられる。審査会の質疑応答においても申請者はこの点を明瞭に認知していた。以上、本論文は、研究テーマの有用性、得られた結果の独創性などにおいて優れた成果と認められたことから、本論文は博士(工学)の学位論文に相当すると判定した。