令和5年度 豊橋技術科学大学第3年次入学者選抜学力検査問題解答例

専門科目(4:建築学)

[1]

(1)

ア.

図 1-1 の荷重条件より、部材 a 、部材 b 、部材 e 、部材 g の軸力は明らかに 0 となる。また、節点②がローラー支持であることより、部材 m の軸力も 0 となる。

トラス全体に注目し、支点①におけるモーメントの釣合いから、支点②の鉛直反力はP(鉛直下向き)となる。よって、部材kの軸力はP(引張)となる。

部材 k , 部材 d の軸力は共にP(引張)であることを考慮すると,節点⑥における鉛直方向の力の釣合より、部材 j の軸力は0となる。また、部材 j の軸力が0であることから、節点⑥における水平方向の力の釣合いより、部材 f の軸力は0となる。

部材 j , 部材 m の軸力が0であることから, 節点③における水平および 鉛直方向の力の釣合いより, 部材 i , 部材 l の軸力は0となる。

部材 f , 部材 i の軸力が0であることから,節点⑤における力の釣合いより,部材 h の軸力は部材 c の軸力と等しい $-\sqrt{2}P$ (圧縮) が作用する。以上をまとめると,

軸力が引張となる部材: d, k

軸力が圧縮となる部材: c, h

イ.

トラス全体の水平方向(X方向)の力の釣合い、鉛直方向(Y方向)の力の釣合い、支点②におけるモーメントの釣合い

 $\Sigma X = 0$; $H_1 - P - 2P - P = 0$

 $\Sigma Y = 0$; $V_1 + V_2 = 0$

 $\Sigma M_{(2)} = 0$; $10V_1 = 10 P + 5.2P = 20 P$

より,

 $H_1 = 4P$, $V_1 = 2P$, $V_2 = -2P$

部材 a , b , e , g の軸力は0である。

節点®における水平方向(X方向)および鉛直方向(Y方向)の力の釣合 いから:

$$\Sigma X = 0$$
 ; $\frac{1}{\sqrt{2}}N_c + N_a + P = 0$

よって
$$N_c = -\sqrt{2}P$$
 (圧縮)

$$\Sigma Y = 0$$
 ; $\frac{1}{\sqrt{2}}N_{\rm c} + N_{\rm d} = 0$

よって
$$N_d = P$$
 (引張)

支点②における水平方向(X方向)および鉛直方向(Y方向)の力の釣合 いから:

$$\Sigma X = 0 \; ; \; N_{\rm m} + P = 0$$

よって
$$N_{\rm m} = -P$$
 (圧縮)

$$\Sigma Y = 0 \; \; ; \; \; N_{k} - 2P = 0$$

よって
$$N_k = 2P$$
 (引張)

節点⑥における水平方向(X方向)および鉛直方向(Y方向)の力の釣合 いから:

$$\Sigma Y = 0$$
 ; $N_{\rm d} - N_{\rm k} - \frac{1}{\sqrt{2}} N_{\rm j} = 0$

$$\Sigma Y = 0$$
 ; $N_{\rm d} - N_{\rm k} - \frac{1}{\sqrt{2}} N_{\rm j} = 0$ よって $N_{\rm j} = \sqrt{2} \left(N_{\rm d} - N_{\rm k} \right) = -\sqrt{2} P$ (圧縮)

$$\Sigma X = 0$$
 ; $\frac{1}{\sqrt{2}}N_{\rm j} + N_{\rm f} + 2P = 0$

$$\Sigma X = 0$$
 ; $\frac{1}{\sqrt{2}}N_{\rm j} + N_{\rm f} + 2P = 0$ よって $N_{\rm f} = -\frac{1}{\sqrt{2}}N_{\rm j} - 2P = -P$ (圧縮)

節点③における水平方向(X方向)および鉛直方向(Y方向)の力の釣合 いから:

$$\Sigma Y = 0$$
 ; $N_{\rm i} + \frac{1}{\sqrt{2}} N_{\rm j} = 0$

よって
$$N_i = -\frac{1}{\sqrt{2}}N_j = P$$
 (引張)

ア.

曲げモーメントの分布は下図のとおりである。

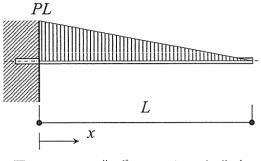


図1-3の曲げモーメント分布

弾性曲線方程式は次式となる。

$$\frac{\partial^2 w}{\partial x^2} = \frac{P}{EI} (L - x)$$

両辺を積分すると,

$$\frac{\partial w}{\partial x} = \frac{P}{2EI} \left(2Lx - x^2 \right) + c_1$$

$$w = \frac{P}{6EI} (3Lx^2 - x^3) + c_1 x + c_2$$

ここで、 c1および c2は積分定数であり、境界条件より

$$\frac{\partial w}{\partial x} = \theta(x) = \theta(0) = c_1 = 0, \quad w(x) = w(0) = c_2 = 0$$

となり,

$$\frac{\partial w}{\partial x} = \frac{P}{2EI} \left(2Lx - x^2 \right), \quad w = \frac{P}{6EI} \left(3Lx^2 - x^3 \right)$$

となる。これより,

$$\delta_L = \frac{P}{3EI} L^3$$
 (下向き), $\theta_L = \frac{P}{2EI} L^2$ (時計回り)

イ.

曲げモーメントの分布は下図のとおりである。

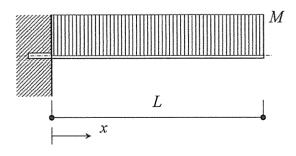


図1-4の曲げモーメント分布

弾性曲線方程式は次式となる。

$$\frac{\partial^2 w}{\partial x^2} = \frac{M}{EI}$$

両辺を積分すると,

$$\frac{\partial w}{\partial x} = \frac{M}{EI} x + c_1$$

$$w = \frac{M}{2EI}x^2 + c_1x + c_2$$

ここで、 c_1 および c_2 は積分定数であり、境界条件より

$$\frac{\partial w}{\partial x} = \theta(x) = \theta(0) = c_1 = 0 \cdot w(x) = w(0) = c_2 = 0$$

となる。これより,

$$\delta_L = \frac{M}{2EI} L^2$$
 (下向き), $\theta_L = \frac{M}{EI} L$ (時計回り)

ウ.

曲げモーメントの分布は下図のとおりである。

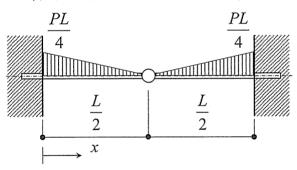


図1-5の曲げモーメント分布

荷重は両方の片持ちばりに均等に作用するため,

$$\delta_{L/2} = \frac{P}{2} \cdot \frac{1}{3EI} \cdot \left(\frac{L}{2}\right)^3 = \frac{P}{48EI} L^3 \quad (下向き)$$

[2]

(1)

1	代謝	2	発汗
3	ふるえ	4	光源
5	直射日光	6	4乗
7	可視光	8	赤外
9	波長	10	回折

(2)

1	日 赤 緯	2	対比
3	大きさ	4	見る時間(動き)
5	明度	6	色相
7	実効面積	8	比例
9	対流	10	伝 導

2と3と4,5と6はそれぞれ順不同。

(3)

ア. 熱貫流抵抗:
$$\frac{1}{10} + \frac{0.009}{0.15} + \frac{1}{25} = 0.2$$
, 熱貫流率: $\frac{1}{0.2} = 5$

室内側表面温度
$$\theta_{si} = 298 - \frac{5}{10} \times (298 - 278) = 288$$

室外側表面温度
$$\theta_{so} = 278 + \frac{5}{25} \times (298 - 278) = 282$$

室外側表面温度 θ_{so} : 282K, 室内側表面温度 θ_{si} : 288K

$$\therefore E_1 = 800 \times \left(\frac{2}{1}\right)^2 = 3200$$

$$E_4 = 800 \times \left(\frac{2}{4}\right)^2 = 200$$

 $E_1 = 3200 \text{ lx}, E_4 = 200 \text{ lx}$

1	クラレンス・ペリー
2	ラドバーン
3	スーパーブロック
4	歩車
5	スプロール
6	都市計画
7	地域
8	関東
9	戦 災
10	災害危険
11	居住誘導
12	テレ

(2)

名称:サヴォア邸

サヴォア邸は近代建築の五原則で挙げられた①ピロティ,②屋上庭園,③自由な平面,④水平連続窓,⑤自由な立面 (ファサード) から構成される住宅である。この住宅の中央には,1階から屋上までを繋ぐ緩やかなスロープが設けられ,「建築的プロムナード」と呼ばれる散策路のようなシークエンスが住宅内に形成されている。 (149文字)

(3)

- 1. コートハウス
- 2. 同潤会
- 3. 燻蒸室
- 4. プロセニアム
- 5. オープン
- 6. 大社造