令和5年度 豊橋技術科学大学第3年次入学者選抜学力検査問題解答例

専門科目 (3:情報·知能工学)

[1]

(1)

1	2
$-3e^{-3x}y^2$	$-3e^{-3x}y^2dx + 2e^{-3x}ydy$

3	4
$-3e^{-9}+3$	$\frac{1+\sqrt{10}}{3}$

(2)

5	6
$-\frac{E_0}{m\omega^2}\cos(\omegat) + v_0t + \frac{E_0}{m\omega^2}$	$-\frac{E_0}{m\omega} + v_0$

(3)

7	
$2\sqrt{km}$	

(1)

関数
$$f(x,y) = e^{-3x}y^2$$

$$\frac{\partial f(x,y)}{\partial x} = -3e^{-3x}y^2 \qquad \qquad \text{※ } -3f(x,y), -3f$$
も正答とする

全微分は,
$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = -3e^{-3x}y^2 dx + 2e^{-3x}y dy$$

$$\int_{0}^{3} \int_{0}^{3} f(x, y) dx dy = \int_{0}^{3} e^{-3x} dx \int_{0}^{3} y^{2} dy = \left[-\frac{1}{3} e^{-3x} \right]_{0}^{3} \left[\frac{1}{3} y^{3} \right]_{0}^{3}$$
$$= \left[-\frac{1}{3} e^{-9} + \frac{1}{3} \right] \left[\frac{27}{3} - 0 \right] = -3e^{-9} + 3$$

ラグランジュの未定乗数をんとおく。

$$g(x, y, \lambda) = f(x, y) - \lambda(x^2 - y^2 - 1) = e^{-3x}y^2 - \lambda(x^2 - y^2 - 1)$$

に対して以下の連立方程式を解く。

$$\frac{\partial g}{\partial x} = -3e^{-3x}y^2 - 2x\lambda = 0$$

$$\frac{\partial g}{\partial v} = 2e^{-3x}y + 2y\lambda = 0$$

$$\frac{\partial g}{\partial \lambda} = -(x^2 - y^2 - 1) = 0$$

①にy, ②にxを掛けて辺々を足して λ を消去すると

$$-3e^{-3x}y^3 + 2xe^{-3x}y = 0$$

③より
$$y^2 = x^2 - 1$$
 であるから、 $-3x^2 + 2x + 3 = 0$

$$x > 0$$
, $y > 0$, $y^2 = x^2 - 1$ より $x > 1$ であるので, $x = \frac{1 + \sqrt{10}}{3}$

このとき
$$y = \frac{\sqrt{2 + 2\sqrt{10}}}{3}$$
 であり、極値は $f\left(\frac{1 + \sqrt{10}}{3}, \frac{\sqrt{2 + 2\sqrt{10}}}{3}\right) = \frac{2}{9}\left(1 + \sqrt{10}\right)e^{-1-\sqrt{10}}$

$$\lim_{(x\to 1+0,y\to +0)} f(x,y) = 0, \quad \lim_{(x,y)\to (\infty,\infty)} f(x,y) = \lim_{x\to \infty} e^{-3x} (x^2 - 1) = 0$$

ゆえに
$$f(x,y)$$
 は $x = \frac{1+\sqrt{10}}{3}$ にて最大値をとる。

(2)

$$x''(t) = \frac{E_0}{m} \cos(\omega t)$$

両辺をtで2回積分する。x(0) = 0, $x'(0) = v_0$ であるから,

$$x'(t) = \frac{E_0}{m \,\omega} \sin(\omega t) + v_0$$

$$x(t) = -\frac{E_0}{m\omega^2}\cos(\omega t) + v_0 t + \frac{E_0}{m\omega^2}$$

$$m>0, E_0>0, \omega>0$$
 であるから、 $x'(t)$ の最小値は $-\frac{E_0}{m\omega}+v_0$

(3)

微分方程式を次のように変形する。

$$x''(t) + \frac{R}{m}x'(t) + \frac{k}{m}x(t) = 0$$

このとき特性方程式は

$$s^2 + \frac{R}{m}s + \frac{k}{m} = 0$$

であり,

$$s = \frac{1}{2} \left(-\frac{R}{m} \pm \sqrt{\left(\frac{R}{m}\right)^2 - \frac{4k}{m}} \right)$$

となる。特性方程式が共役な虚数解をもつ条件は

$$\left(\frac{R}{m}\right)^2 - \frac{4k}{m} < 0$$

$$R > 0$$
 であるから, $R < 2\sqrt{km}$

[2]

(1)

A	В	С
1	i	1

(2)

D	Е	F
bit >> 1		
または	2	1
bit / 2		

G	Н
3	21og ₂ (b+1)

または

F	G
3	1

(3)

I	J
1	
1	1

(1)

ア. 真理値表をもとにカルノー図の空欄を埋めると以下のようになる。

c d a b	0 0	0 1	1 1	10
0 0	1	1	0	0
0 1	1	1	0	0
11	0	0	1	1
1 0	0	0	1	1

イ. カルノー図より、以下の最小積和形が得られる。

cd	00 01		11	10	
0 0	1	1	0	0	
0 1	1	1)	0	0	
1 1	0	0	1	1	
10	0	0	1	1	

 $f = ac + \bar{a}\bar{c}$

ウ.

	1	オ	2	.+	3	,	4	セ
こしょうは個島で	- →	· ~ ~		. 	·	L) ,		

~ / /	/ 1 1 1 0		- ,	2000			0	
	1	ォ	2	+	3	セ	4	ス

(2)

ア. 出力 f_t を入力 f_{t-1} , a_t , b_t の関係を真理値表で表すと以下のようになる。

f_{i-1}	a,	b_t	f_t
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

真理値表より、出力 f_t を入力 f_{t-1} 、 a_t 、 b_t の主加法標準形で表すと次のようになる。

$$f_t = \bar{f}_{t-1}\bar{a}_t\bar{b}_t + \bar{f}_{t-1}a_t\bar{b}_t + \bar{f}_{t-1}a_tb_t + f_{t-1}a_t\bar{b}_t$$

イ. カルノー図を書くと以下のようになる。

f_{t-1} $a_t b_t$	f_{t-1} 00		11	10	
0	1	0		(1)	
1	0	0	0	1	

カルノー図より、出力 f_t を入力 f_{t-1} 、 a_t 、 b_t の最小積和形で表すと次のようになる。

$$f_t = \bar{f}_{t-1}a_t + \bar{f}_{t-1}\bar{b}_t + a_t\bar{b}_t$$

ウ. F = 010

t	3	2	1	0
$f_{\mathbf{t}}$	0	1	0	0
a_t	0	1	0	
b_t	0	1	1	

エ. $f_0=0$ であるから $f_1=0$ となるのは、 $(a_1,b_1)=(0,1)$ のときだけである。さらに、 $f_1=0$ のときに、 $f_2=1$ となるのは、 $(a_2,b_2)=(0,0)$ 、(1,0)、(1,1)の3通りである。最後に、 $f_2=1$ のときに、 $f_3=1$ となるのは、 $(a_3,b_3)=(1,0)$ のときだけであるから、入力信号A,Bの組み合わせは、以下の3通りとなる。

$$(A,B) = (100,001), (110,001), (110,011)$$