見えないものが見える? メロン品質を可視化する技術

助教授中内茂樹

そもそも、なぜ私たちはモノを見ることができ るかと言えば、眼(網膜)に光を感受する細胞(視細胞) があり、その情報を脳で判断しているからです。 人間は明るいときに働く3種類の視細胞(錐体視 細胞)を持っており、それぞれ異なる波長域の光に 対して感受性を持っています(図1)。このおかげ で私たちは光の分光エネルギー分布の違いを色と して感じることができます。私たちの視覚機能は 非常に巧妙で、現代技術が学ぶべきところがたくさん あり、世界中で熱い議論が繰り広げられているので すが、今回はむしろ人間の視覚の限界とそれを越 える技術についてご紹介したいと思います。

波長、色、色覚

もう一度、図1に注目してください。3種類の錐体細胞に端を発す る「色を見る機能=色覚」によって私たちは光の分光エネルギー 分布の違いを見分けることができます。私たち人間はほとんど無 数と言ってよいほど多くの色(数百万色とも数千万色とも言われ る)を識別できると言われていますが、2つの意味で色覚には限 界があります。まず、色覚で捕らえられる光の波長範囲がわずか 約400~700nmの範囲に限られていることです。この範囲は可視領 域と呼ばれ、読んで字の如くです。また、可視領域についての分光 エネルギー情報をわずか3種類のセンサで捕らえるため、相当量 の情報が欠落してしまいます。例えば、テレビに出てくる美しい 女性の肌色と目の前に居る女性の肌色がたまたま同じに「見えた」 としても、それらの光の「物理的な性質」は全く異なり、人間に区 別出来ないだけです。もちろん、そのおかげでテレビがあたかも自然 に「見える」色を再現できるわけですが。

ヒトの眼を超える眼

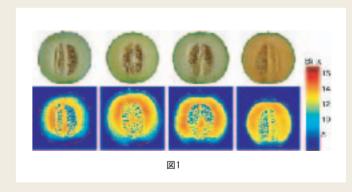
ヒトの眼を超える一番分かりやすい方法は、人間には見えない 波長帯域に感度を持ち、さらに(ある種の昆虫のように)3種類ではな くもっと多くの種類の(波長分解能の高い)色センサを用いる方 法です。こうすれば原理的に人間に見えない情報を捕らえるこ とが可能になります。私たちの研究室にあるスペクトルイメー ジング装置は、近赤外モノクロCCDカメラの前面に音響光学フィ ルタを設置したもので、400~1000nmの範囲について任意の波長帯域 の映像を捉えることができます。これに似た装置はこれまでにも 衛星などに搭載されており、地球環境の変化を捉えることなどに成 功してきましたが、最近の目覚しい技術進歩により、どんどん装 置は小型化され、性能も向上し、この地上でスペクトルイメージ ングが可能になりました。宇宙から地上に降りてくれば、当然そ の撮影対象も変化することになります。で、何を撮影しようかと しばらく考えていたところ、学会等々での雑談の中で、ふと渥美 半島特産のメロンを思いついたのです。

食品品質を測る―近赤外分光法

消費者にとって食品品質に対する関心はどの時代でも高いの ですが、かつてはそれを知る確かな方法が無く、「腎い奥様」が知 っている秘伝の方法(いまでもスーパーなどでキャベツを持ち上げ たり、なでてみたり、たたいたりしている人をときどき見かけ

ます)に頼らざるを得ませんでした。そうした技を持っていな い人でも、私が子供の頃は八百屋のおじさんがこっそり教えて くれました。ところが、店舗の形態も変化し、おじさんも少なく なるにつれ、品質計測を何とか自動化しなければという機運が高 まりました。

光を使った農産物の品質計測の試みは70年代から行われて います。最初は可視光を使ったもので、いわゆる農産物の大きさ とか表皮色計測が主な目的でした。見かけを重視する日本では 一番早く実用化された技術の一つです。その後、80年代後半にな って、人間には見えない近赤外領域の光を使って青果物の品質(糖 度など)を計測する方法が研究されるようになりました。外観は ともかく、やはり味を計測したいという要求に応えるためです。 近赤外光を使った方法は近赤外分光法といって、現在、広く研究 が進められています。そもそも、糖度などの味はその農産物に含 まれている化学物質組成と高い相関があります。また、味に関わ っている水、タンパク質、脂質、糖分、デンプンなどの化学成分は それぞれ特定波長の光を吸収することが分かっており、その吸収 の度合いからどの成分がどれだけ含まれているかをある程度 正確に知ることができる、というのがこの方法の原理です。


メロンの糖度分布を見る

こうした方法は、桃、ナシ、りんご、トマト、みかんなどの青果 物の他、乳製品、肉類、飲料品などにも応用されるようになってきま した。また、その一部は実用化され選果場で稼動しているものもあ ります。計測法には様々ありますが、基本的には対象物に光を照 射し、その反射光あるいは透過光の分光エネルギー成分(吸光度ス ペクトル)を調べるという方式です。この方法は対象を破壊するこ となく計測できるというメリットがありますが、光を検出する 場所が1点であるため(ポイント計測)、内部成分の分布までは分 からず、全体の平均的な値を反映したものになります。

メロンの話に戻ります。あるとき、渥美のメロン農家の方と話 をする機会があったのですが、その方は「メロン作りは男のロマ ン」という印象的な言葉をおっしゃっていました。話せば長くな るので詳細は省略しますが、要するに自分が精魂込めて作ったメ ロンが選果場で選別されると、大したタマではないものまで自分 と同じ特級に分類されてしまうのは納得し難い、というのです。 その人のメロンは確かに非常においしいという評判なので、現在 のポイント計測法では捉えられない何かがありそうです。私たち はポイント計測法を超える最初のステップとして、糖度の分布: どこがどのくらい甘いのかを計測することにしました。そのため

には、全ての場所について吸光度スペクトルを計測する必要があり、 それを可能にするのがスペクトルイメージング法です。メロンを 半分に切った断面を撮影し、それぞれの場所ごとに吸光度スペク トルを計測した後、統計的な手法によって糖度分布を算出した結 里が図2です。左から適孰期の少し前 適孰期 適孰期の少し後に収 穫したメロン、右端は赤肉メロンです。まず、左3つの緑肉メロン を比べると、糖度の高い甘い部分が上の方から少しずつ広がって いく様子がわかります。また、赤肉メロンは緑肉メロンに比べて 糖度分布の偏りが少ない、つまり、特別甘いところも無い代わりに 皮の近くまで甘いということも分かります。こうした違いが私たちが 感じる「おいしさ」に微妙な影響を与えている可能性があります。

今回、豊橋種苗(株)さんより様々な品種、栽培時期のメロンをご提供 いただき、全国的にも極めて貴重なデータを計測することができ ました。実は、こうしたご好意に報いるために私たちに何ができる かを担当学生と相談し、栽培から付き合うことにしよう、と決めたま では良かったのですが、結局は邪魔になるばかり。それでもいろい ろと興味深い体験やお話をお伺いすることができました。その学 生が「こういうのを'ものづくり'って言うのですよね」と言ってい たのもまた印象的でした。

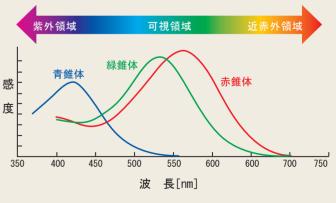


図2